The Labour Force Matrix of Pakistan: Selected Applications SULEIMAN IBRAHIM COHEN* #### 1. INTRODUCTION Development can be viewed from many angles. To some it means progress in creating a credible and viable political system. Others view it as a process of social modernization. To most economic planners, development is growth in the national income. This paper follows the view that the ultimate aim is the development and utilization of human capabilities. More generally, the human angle should gain a special position among alternative viewpoints in the light of the substantial evidence that strengthening of the capabilities of human beings to produce, choose and innovate is the most effective means of achieving economic, political and social development. Basically, the human-resources point of view stresses the broadening of opportunity for all elements of the population, and progress is conceived to be a movement towards a multi-option society. If people — in the present context, those who constitute the labour force — become the units of analysis, then significant attention needs to be given to classifying the labour force into relevant cells and to identifying the profile, problems and prospects for each cell. With this purpose in mind, this paper develops and estimates in the next section a labour force matrix (LFM) for Pakistan which will be shown to be a new and very helpful tool in describing the multi-dimensional nature of the work force and its dynamic characteristics over time. In the remainder of the paper we shall use the LFM as a guideline in the simulation of the labour force in the Sixth Five-Year Plan. ¹ This theme is as old as intellectual history. More recently it was revived among econom- ists, by Harbison, Meyer and Ginsburg. ^{*}The author is Professor at the Erasmus University, Rotterdam. He wishes to thank Bart Kuypers, Khalid Sheikh and Karim Tegani for their programming and computational assistance. Thanks are also due to Peter Block and Job Swank for previous collaboration relating to the content of the paper. #### 2. THE LABOUR FORCE MATRIX OF 1982-83 A student of economics in the country knows that 29 percent of the labour force participants work in urban areas, that 15 percent work in manufacturing, that 28 percent are employees, that 72 percent are illiterate or below primary school, and that perhaps 25 percent are production workers. What the student, nor his teacher, would not know is the combined percentage of illiterate production workers functioning as employees in manufacturing in urban areas. Similarly, for various purposes one may desire to know how many persons work in various types of cross-combinations in terms of location, age, sex, activity, occupation, education and status, but this information is not readily available. However, bits of information can be gathered and organized in what we call a labour force matrix (LFM), which will exactly meet such desires. Table 1 gives such a matrix for Pakistan. Table 1 is a matrix of 70 rows by 63 columns, giving in total 4410 cells. We utilize the rows for classifications of location, status and education, while the columns are reserved for sectors of activity and occupation. One can read that the above-mentioned group falls in Row 8 and Column 21. This group counts 481732 persons out of a total of 26.1 million persons, or 18 percent of the total labour force. In the same way the absolute or relative size of other groups in the labour force can be directly calculated. The matrix is flexible and can be aggregated to whatever classifications are thought desirable. For instance, Table 2 gives an arbridged matrix for the whole country in 15 rows and 16 columns. The rows contain three status groups and seven educational levels. The columns contain four sectors and four occupational groups. Furthermore, such a matrix can be expressed in percentages which add to 100.0 percent, as in Table 3. We shall devote the rest of this section to a discussion of the methodology for calculation of the matrix and the uses to which such a matrix can be put. In principle, an LFM can be directly programmed from the labour force survey. So far, this has not been done. Instead, the survey results are usually described through simple cross-tabulations by sector/occupation, sector/status and the like. Under certain assumptions, an appropriate LFM can be constructed from published cross-tabulations. The procedure, which is described in Appendix 1, makes use of joint probabilities of cross-tabulations and the RAS method. In view of the lack of verification, the results should be seen as tentative approximations of the real figures. The size of the matrix is determined by the available data and the chosen disaggregations. As was mentioned above, the rows count 70 lines which represent two locational disaggregations (rural and urban), four status types and five educational types. The columns count 63 which is the result of including 9 sectors and 7 occupations. It is noted that the choice regarding what should come in the rows and columns does not affect the results. Our particular choice here has been governed by the consideration that employment by sector and occupation is determined primarily by demand factors, while the labour force by location, status and | | 0 | |---------|-------------------------| | Table 1 | The Labour Force Matrix | | | | | - | PROD | 7973
1616
1616
150
150
150
150
150
150
150
150
161
161
161
161
161
161
161
161
161
16 | | PROD | 1068
294
216
1185
30
20 | 12186
3352
2470 | 340
229
35
50063 | 13770
10149
8695
1397 | 143
14611
4074
3003 | 2573
413
278
42
1605 | 1267
934
800
128
87
13 | | 664 | 183
135
115
19
12 | 158611
43627
32156
27549
4426 | 2981
452
80364
16603
12238
10485 | 1684
1134
172
15378
4230
3118 | 2671
429
289
44 | 4111
3030
2596
417
281
43 | |--------|------|---|----------|------|--|--------------------------|--|---|----------------------------------|---|---|-----------|--------------|--|---|---|--|------------------------------|---| | | AGRI | | | AGRI | 25 4 2 2 1 1 0 | 108
16
10 | 3 3 416 | 61
39
26
13 | 7
129
19
12 | 36 2 3 4 8 | v c c | Odd | PRO
57 | 8 5 4 7 1 1 | 5081
749
478
319
159 | 127
80
1823
269
171
114 | 57
46
29
488
72
46 | 31
12
12
8 | 63
63
72
113
7 | | SN SN | SERV | 169
169
169
170
170
170
170
170
170
170
170 | | SERV | 2484
587
346
321
80
40 | 13736
3245
1911 | 1//8
445
222
0
0
0
29985 | 7084
4173
3862
970
485 | 0
16650
3934
2317 | 2155
539
269
0
4115 | 972
573
533
133
67 | 1004 | AGRI
1361 | 321
189
176
44
22
0 | 37245
37245
21939
20408
5102 | 2551
0
31880
7532
4436
4127 | 1032
516
0
15243
3601
2121 | 1973
493
247
0 | 2782
1639
1525
381
191
0 | | ACTURE | SALE | 16
16
17
18
17
18
18
18
18
18
18
18
18
18
18 | ADE | SALE | 20996
8153
7732
7797
2135
1132
615 | 84563
32835
31141 | 31402
8600
4560
2476
20860 | 54985
54985
56282
42799 | 12321
16729
15325
42986 |
43346
11871
6295
3417
37472 | 14550
13799
13915
3811
2021
1097 | S | SERV
7 | 0 0 - 3 3 3 | 638
247
234
236
65 | 293
114
108
109 | 30
16
70
27
26 | 26 | 26 27 4 4 7 2 4 4 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | MANIII | CLER | 19
170
170
170
170
170
170
170
170
170
170 | TR | CLER | 6
8
8
32
32
19 | 154 107 181 | 1580
763
455
54
28 4 | 19 1
33 1
251 1
138
82 | 10
8 1
6 10 | 75
25
3
35 | 24
41
317
174
104 | SERVICES | SALE
19 | 13
22
169
93
55 | 9322
6485
10943
83899
46205 | 3242
156
109
184
1407 | 775
262
54
40
28
47 | 360
198
118
14 | 369
623
4774
2629
1568
185 | | | ADMI | 446
446
446
447
447
447
447
447
447
447 | | ADMI | 179
90
134
471
247
504 | 16 4 8 8 | 239
125
256
216
281 | 140
210
736
386
789 | 666
164
62
123 | 430
225
461
389
23 | 11
17
60
32
65
55 | a la | 168 | 84
126
442
232
474
400 | 896
1344
4704
2464 | 5040
4256
511
256
384
1342 | 703
1438
1215
257
129
193 | 675
351
723
611 | 296
296
155
317
268 | | | PROF | 18
18
18
18
18
18
18
18
18
18 | | PROF | 0101411 | 8 1 3 | 25
44
25 | 18
27
104
58 | 102 | 17
9
17
3 | 2
12
13
13 | , and a | ADM1 | 80
118
462
259
481
453 | 15545
11011
16192
63474
35623 | 66065
62179
3344
2369
3484
13657 | 7664
14214
13378
472
334
494 | 1925
1081
2004
1886 | 754
1109
4347
2440
4524
4258 | | | PROD | 2.2 | | PROD | 4705
1294
945
817
131
88 | 154056
42374
31232 | 2875
4299
2895
539
60335 | 16596
12232
10480
1684
1134 | 172
2237
515
454 | 389
62
42
6
21343 | 3395
2502
2144
344
232
35 | noga | PROF
15 | 4 6 6 0 0 | 798
219
162
139
22 | 180
180
50
37
31 | 3
3
10
7 | 9 1 1 0 | 28
20
18
18
2
0 | | | AGRI | 000000000000000000000000000000000000000 | | AGR | 000000 | 0000 | 00000 | 00000 | 0000 | 00000 | 000000 | do da | O 0 | 00000 | 00000 | 00000 | 00000 | 0000 | 000000 | | | SERV | 156
237
237
237
250
266
666
666
666
666
666
666
666
666
66 | N | SERV | 264
62
37
34
9
9 | 1481
986
582 | 135
68
0
870 | 206
121
113
28
14 | 0
61
14
8 | 8
2
1
0
265 | 63
37
9
4
0 | 1954 | 223 | 53
31
7
7
0 | 5847
1381
814
757
189 | 95
0
702
166
98
91 | 23
11
256
61
36 | 33 | 139
82
82
76
119
0 | | SINING | SALE | 000000000000000000000000000000000000000 | STRUCTIC | SALE | 000000 | 0000 | 00000 | 0000 | 0000 | 00000 | 00000 | Vagas | 3EKV | 56
53
53
15
8 | 2751
1068
1013
1022
280 | 148
81
753
292
277
280 | 77
41
22
137
53
50 | 51
14
7
4 | 159
150
152
42
22
12 | | 1 | CLER | | CONS | CLER | 3
3
38
21
12 | 288
201
339 | 2393
1429
853
100
5 | 45
45
25
15 | 7000 | 2
1
0
14 | 10
16
126
69
41
5 | FINANCE | 33 | 23
39
298
164
98 | 3731
2595
4379
33576
18491 | 11030
1298
37
26
44
334 | 184
110
13
7
5
9 | 65
36
21
3 | 285
335
2567
1414
843
99 | | | ADMI | 1338
1639
1639
1639
1639
1639
1639
1639
1639 | | ADMI | 1333
666
999
3498
1832
3748
3165 | 1940
970
1455 | 2668
2668
5457
4608
570 | 285
427
1496
783
1603 | 1353
42
21
31 | 109
57
117
99 | 52
78
272
143
292
246 | 0212 | 1109 | 555
832
2911
1525
3119
2634 | 2665
1333
1999
5996
3664 | (495)
(6329)
451
226
339
1185 | 621
1270
1072
173
87
130 | 455
239
488
412 | 113
169
591
310
634
535 | | | PROF | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | PROF | 26
18
27
106
60
1111 | 490
347
510 | 2000
1122
2082
1959
108 | 1113
443
248
461 | 434 | 9
10
9
28 | 20
30
116
65
121
114 | TANA | 30
30 | 21
31
123
69
128
120 | 934
662
973
3814
2141 | 3736
3736
119
85
124
487 | 273
507
477
13
9 | 53
55
52 | 61
90
351
197
365
344 | | | PROD | 285
200
200
200
200
200
200
200
200
200
20 | | PROD | 000000 | 23491
6461
4762 | 656
441
67
1353 | 3/2
274
235
38
38 | 4000 | 0 0 0 1011 | 278
205
176
28
19 | aOdd | 1238 | 341
251
215
35
23
4 | 173797
47804
35234
30187
4850 | 495
495
80168
22051
16253
13924 | 2237
1507
228
12268
3375
2487 | 2131
342
231
35 | 4145
3055
2597
420
283
43 | | | AGRI | 16621
1563
1563
1563
1563
1692
1693
1600
11879
11879
11997
11007
1007
1007
1007
1107
1107 | | AGRI | 000000 | 1079 | 34
27
17
59 | 7 4 4 4 4 | -000 | 0 0 0 0 14 | 9 4 6 1 1 1 | uo aa | PROD
8 | 00 | 416
61
39
26
13 | 10
180
27
17
11 | 29 3 4 6 | 1 1 0 2 | 23 8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | SERV | 101
104
104
105
105
105
105
105
105
105
105
105
105 | Y | SERV | 000000 | 5737
1355
798 | 186
93
0
176 | 24 22 24 2 2 3 3 6 3 8 6 | 0000 | 0
0
0
0
196 | 46
27
25
6
0 | 1 d.J. | 130
130 | 31
17
2
0 | 8843
2089
1231
1145
286 | 2167
2167
512
302
281 | 70
35
0
623
147 | 81
20
10
0 | 144
85
79
20
10
0 | | CULTUR | SALE | 2 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | CTRICI | SALE | 000000 | 270
105
99 | 27
27
15
8
8 | 1277 | -000 | 0 0 0 0 13 | 0 1 1 2 2 2 | Year A | SEKV
0 | 000000 | 00000 | 00000 | 00000 | 00000 | 000000 | | AGR | CLER | 2 2 3 2 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | ELI | CLER | 000000 | 1900 | 9416
9416
5617
661 | 5 43 24 14 14 | 7000 | 00006 | 34
58
444
245
146
17 | TRANSPORT | SALE
16 | 11
18
141
78
46
5 | 4575
3183
5371
41178
22678 | 15527
1591
93
65
109
837 | 161
275
32
14
10 | 129
71
42
5 | 240
167
281
2156
1187
708
83 | | | ADMI | 000000000000000000000000000000000000000 | | | 000000 | | | 4
6
10
21 | 0000 | 0000% | 2 4 7 1 1 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | TI | 98 | 49
74
258
135
277
234 | 616
308
462
1616
846 | 1/31
1462
213
106
160
559 | 293
599
506
64
32
48 | 169
88
181
153 | 118
27
27
49
100
85 | | | PROF | 7 2 3 8 8 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | PROF | 000000 | 660
467
687 | 2893
1512
2805
2640
21 | 22
88
49
91 | 98000 | 0
0
0
21 | 15
21
84
47
86
82 | , and a | ADMI
2 | 6
36
38
38 | 721
510
751
2942
1651 | 2882
188
133
196
767 | 431
798
751
16
11 | 37
64
64 | 32
47
185
104
193
181 | | | | MASEC | | | PRIM
MSEC
HSEC
INTE
DEGR | 3PRI
9RIM
MSEC | INTE
DEGR
OST
SPRI | MSEC
HSEC
INTE | POST
BPRI
PRIM
MSEC | HSEC
INTE
DEGR
POST
PRI | PRIM
MSEC
HSEC
INTE
DEGR | TOUG | PROF | PRIM
MSEC
HSEC
INTE
DEGR | BPRI
PRIM
MSEC
HSEC
INTE | PECR
POST
BPRI
PRIM
MSEC
HSEC | INTE
DEGR
POST
BPRI
PRIM
MSEC | HSEC
INTE
DEGR
POST | PRIM
MSEC
HSEC
INTE
DEGR | | | | EMPR EMPE SELF FAMW UNEM | | | EMPR P | EMPE B | SELF I | | FAMW | UNEM | | | EMPR | | EMPE | SELF | FAMW | Manii | | | - 1 | |----------------------| | | | N | | 00 | | 9 | | 1198 | | 77 | | 14 | | = | | 2 | | C | | 0 | | TI. | | 62 | | Party. | | 5 | | 0 | | 0 | | by Activity and Occi | | ĕ | | cd | | 5 | | +44 | | 2 | | 1 | | 0 | | 4 | | > | | 2 | | = | | 0 | | 1 | | 95 | | ~ | | ō | | tu | | - | | č | | 4 | | status and Educa | | 2 | | 64 | | | | 1 | ROD | 13673
3021
1664
720
1086
35
35 | 42635
42635
18445
27819
907
907 | 28916
71005
30718
46329
1511 | 193565
42773
23559
10192
15372
501 | 501
38299
8463
4661
2017
3041
99 | 1 | PROD | 830
183
101
44
66 | 3742 | 455
197
297 | 10
10
36176
7994 | 4403
1905
2873
94 | 94
7986
1765
972
420 | 634
21
21
1594
352
194 | 84
127
4
4 | 11 | ROD | 1147
254
140
60
91
3
3
121702
26893
14812
6408 | 315
315
315
64709
14299
7876
3407 | 5139
168
168
21290
4704
2591 | 1121
1691
55
55
6798 | 1502
827
358
540
18
18 | |--|---------|--|---|--|--|---|---------|---------|--------------------------------------|----------------------|----------------------------------|--------------------------------|---|--------------------------------------|--|------------------------------|---------|--------
--|---|--|---------------------------------------|---| | | INGRI F | 18 | | | | 0 0 0 1 1 2 4 8 0 | | = | | 1 132 | 2 8 4 1 | 0
0
222
135 | 3 3 3 3 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 | 278
31
17 | 0 0 0 1 9 4 4 6 4 4 6 4 4 6 4 9 4 9 9 9 9 9 9 9 | 0 0 0 5 | | AGRI P | 87
10
5
3
0
0
6474
118
399
205 | | | 35
4
1
2
36.5 | 122 123 10 1 | | | :RV | | 6825
1575
1386
438
29
29
0 | | | | | SERV | | 10
0
6780 | 1386
1377
435
29 | | | 0
18531
4276
3762
1188 | | 201
13
13
0 | | RV A | 8 0 3 0 1 1 7 2 2 0 8 | 340000 | 0 7 8 0 0 0 | 2751
183
183
0
0
11635 | 000000 | | FURING | LE SI | | | | | 0000000 | DE | E | 158
177
152
152
00 | 150
0
356 | 851
846
633 | | | | | | SES | LE SE | 0 268
0 627
0 544
0 177
0 170
0 19166
0 3890
0 3890 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 00000 | 00000 | 00000 | | NUFACTUR | R. SA | 45
45
82
82
82
83 | 886
222
556
885 | 29
64
64
64
64 | ,000000 | 0
107
113
107
457
147
67 | TRAD | ER SA | | 1 17 26 17 | 26 3
26 3
13 1 | | | | 0 3904
0 976
0 0
0 11 22340
11 7299
11 4957 | | SERVICI | R SA | 55
55
55
55
51
51
51 | 26
57
117
95
95
36 | 222
37
0
0 | 00002 | 757
712
8049
979
445
134 | | MANU | - | | | | | | | II CLER | | 2080 | | | 0 | 00000 | 00000 | 0000 | | CLE | 135
143
135
135
185
185
185
185
1189
1189
1189
1189
11 | | | | | | | ADM | 321
192
321
321
320 | 252
252
252
253
254
454 | 29
29
29
19
48 | | 0000000 | | ADMI | 100000 | 3 3 | 7 7 7 7 7 | 3
25
15 | 15
15
10
25 | | 00000 | | | ADMI | 30
30
30
30
20
20
21
27
27
166
166 | 2772
2772
101
101
61
61 | 401 | | | | | PROF | 19
7
16
51
18
13 | 219
84
181
586
202
147
139 | 148
57
123
397
137 | 37
113
13 | 9
16
6
6
13
13
11
10 | | PROF | 00000 | 0000 | 0000 | 0000 | 0000 | 00000 | 00000 | 0000 | | PROF | | | | | | | | PROD | 000000 | 1629
1686
928
402
606
20
20 | 1032
228
126
54
82
3 | 1003
222
122
53
80
3 | 8000000 | | PROD | 3338
738
406
176
265 | 399425 | 88263
48614
21031
31720 | 1034
1034
91077
20126 | 11085
4796
7233
236 | 236
15209
3361
1851
801 | 1208
39
39
23653
5227
2879 | 1245
1878
61
61 | | PROD | 0000000000 | 000000 | 000000 | 00000 | 00000 | | | AGRI | 000000 | 0000000 | 000000 | 000000 | 0000000 | | AGRI | 00000 | 0000 | 0000 | 0000 | 0000 | 00000 | 00000 | 0000 | | AGRI | 0000000000 | 000000 | 000000 | 00000 | 00000 | | | ERV | 0000000 | 0000000 | 000000 | 000000 | 0000000 | 7 | SERV | 13 3 3 0 0 | 0 0 0 | 196
62
4 | 0
187
43 | 38 | 47
11
10
3 | 0
0
62
14
13 | 4000 | | ERV | 327
76
66
21
1
1
1
0
6063
1399
1231
389 | 26
26
0
837
193
170
54 | 440000 | 0
0
0
0
329 | 76
67
21
1
1
0 | | ING | S | | | | | 0000000 | RUCTION | 603 | | 0000 | 0000 | 0000 | 0000 | 00000 | 000000 | 0000 | NCE | LE SI | 000000000 | 000000 | 000000 | 00000 | 00000 | | MININ | R SA | 0000000 | 1718877 | | 000000 | 0000000 | CONSTRU | | | 0000 | 0000 | 0000 | 0000 | 00000 | 000000 | 0000 | FINA | S SA | | | **** | 00000 | ************************************** | | | | | | | | 0000000 | | CLER | | | | | | | | | | CLE | 57
60
57
243
78
36
11
11
1415
1503
1415
6058 | | | | 7 1 6 9 4 1 | | | ADMI | 000000 | 717
430
430
430
287
717 | 24446 | 000000 | 0000000 | | ADMI | 285
171
171
171
171 | 285 | 1043
1043
1043
695 | 1738
0
273
164 | 164
164
109
273 | 00000 | 00000 | 0000 | | ADMI | 1190
714
714
714
476
1190
0
1683
1010
1010 | 673
1683
0
189
113
113 | 75
189
0
0
0
0 | 00000 | 00000 | | | PROF | 000000 | 0000000 | 000000 | 000000 | 0000000 | | PROF | 00000 | 0000 | 0000 | 0000 | 0000 | 00000 | 00000 | 0000 | | PROF | 105
40
87
280
97
70
66
1310
504
1083 | 1209
882
831
87
87
72
72 | 80
58
55
0
0 | 00004 | 17
36
117
40
30
28 | | | PROD | 672
149
82
83
33
2
2 | 4071
900
493
214
323 | 16423
3629
1999
865
1304
43 | 43
17310
3825
2107
911
1375
45 | 45
1257
278
153
66
100
3 | | PROD | 452
100
55
24
36 | 54180 | 11972
6594
2853
4303 | 140
140
675
149 | 88
38
24
24 | 2
655
145
80
35 | 52
2
2
623
138
76 | 88
49
2 | | PROD | 1516
335
185
80
120
4
4
4
4
4309
22752
9843 | 14846
484
484
97279
21496
11840
5122 | 7725
252
252
252
21431
4736
2608 | 1128
1702
55
55
8876 | 1962
1081
467
705
23
23 | | | AGRI | 261724
28943
16136
8269
1034
328
429 | 1117187
123546
68875
35299
4412
1399
1830 | 4307999
476407
265593
136116
17015
5395 | 7055
4679354
517474
288487
147850
18481
5860 | 7663
348134
38499
21463
11000
1375
436
570 | | AGRI | 15
2
1
0
0 | 0 0 1276 | 141
79
40
5 | 2 2 15 2 2 | 1000 | 15
2
1
0 | 0
0
15
2
1 | 0000 | | AGRI | 7
1
0
0
0
0
0
0
73
73 | 3
1
1
326
36
20
10 | 0 0 1 4 7 4 8 8 8 | 2
0
0
314 | 35
19
10
10
1 | | Œ | SERV | 000000 | 0000000 | 000000 | 000000 | 0000000 | Y | SERV | 219
51
44
14 | 100 | 4069
3580
1130
75 | 75
0
187
43 | 38
12
1 | 273
63
55
17 | 1
0
220
51
45 | 14
1
0 | | SERV | 94
22
19
6
0
0
0
7767
1792
1577
498 | 33
33
3436
793
697
220 | 15
15
0
1140
263
231 | 73
5
0
401 | 93
2
2
0
0
0 | | CULTUI | SALE | 000000 | 0000000 | 000000 | 000000 | 0000000 | CTRICII | SALE | 01 2 3 0 | 0 0 289 | 94
94
11 | 0 11 0 4 | 00017 | 10 3 3 | 3 3 0 0 0 2 | 000 | NSPORT | SALE | 0000000000 | 000000 | 000000 | 00000 | 00000 | | AGR | CLER | 38
40
38
162
52
24 | 206
219
206
883
283
129 | 24
25
102
33
15 | 4000000 | 63
67
67
270
87
39 | ELE | CLER | 59
63
59
252
81 | 37 | 6370
27271
8758 | 0, | 10 3 | 00000 | 0
0
77
72 | 310
100
45
14 | TRA | CLER | 828
880
828
3544
1138
517
155
9231
9808
9231 | 12692
5769
1731
137
145
137
586 | 188
86
26
0
0 | 0 0 0 0 434 | 461
434
1856
596
271
81 | | 1 | ADMI | 000000 | 0000000 | 000000 | 000000 | 0000000 | | ADMI | 00000 | 0000 | 0000 | 0000 | 0000 | 00000 | 00000 | 0000 | | ADMI | 1340
804
804
804
804
536
1340
0
841
505
505 | 336
841
0
302
181
181 | 302
0
0
0
0 | 00000 | 00000 | | furnam fo | | 42
16
35
112
39
28 | 115
44
95
306
106
77 | 188
72
155
502
173
173 | 119
55
21
46
148
51
37 | 35
24
20
20
63
16
15 | | | | 7 286 | 218
468
1513
523 | 381
359
3 | 7 0 0 7 N | 0 - 0 - 7 | 100474 | 12
4
3 | | PROF | 2 2 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | E 9 6 9 8 4 | | TO T | - | BPRI
MSEC
HSEC
INTE
DEGR | BPRI
PRIM
MSEC
HSEC
HSEC
INTE
DEGR | BPRI
PRIM
MSEC
HSEC
INTE | POST
BPRI
PRIM
MSEC
HSEC
INTE | POST
BPRI
PRIM
MSEC
HSEC
INTE
DEGR
POST | | | BPRI
PRIM
MSEC
HSEC
INTE | DEGR
POST
BPRI | PRIM
MSEC
HSEC
INTE | DEGR
POST
BPRI
PRIM | MSEC
HSEC
INTE
DEGR | POST
BPRI
PRIM
MSEC
HSEC | INTE
DEGR
POST
BPRI
PRIM
MSEC | HSEC
INTE
DEGR
POST | | | BPRI
MSEC
HSEC
INTE
DEGR
POST
PRI
MSEC
HSEC | INTE
DEGR
POST
BPRI
PRIM
MSEC
HSEC | INTE
DEGR
POST
BPRI
PRIM
MSEC | HSEC
INTE
DEGR
POST
BPRI | PRIM
MSEC
HSEC
INTE
DEGR | | | | | | SELF | PAMW | UNEM | | - 1 | EMPR | EMPE | | SELF | | FAMW | UNEM | | | | EMPR | SELF | FAMW | UNEM | | Table 2 Abridged LFM, 1982-83, in persons Status and Education by Activity and Occupation Aggregated Matrix, 1981 | | | AGNICOLIONE | OFFORE | | The Party of P | MINING/MA | MINING/MANUF/ELECIK | | |----------|------|-------------|---------|----------
--|-----------|---------------------|---------| | MENT | PROF | ADM/CLE | SAL/SER | AGR/PRO | PROF | ADM/CLE | SAL/SER | AGR/PRO | | WAGE | | | | | | | | | | BPRI | 207 | 293 | 454 | 1465016 | 7722 | 15719 | 37487 | 943044 | | PRIM | 96 | 294 | 121 | 165647 | 5206 | 13184 | 8838 | 235931 | | MSEC | 183 | 302 | 84 | 93313 | 7868 | 15320 | 6984 | 156300 | | HSEC | 625 | 1487 | 80 | 49023 | 30385 | 78496 | 3357 | 111855 | | INTE | 261 | 578 | 21 | 8369 | 16583 | 35597 | 553 | 48235 | | DEGR | 321 | 298 | 11 | 3775 | 29908 | 25316 | 331 | 10792 | | POST | 303 | 63 | 3 | 3535 | 28149 | 8279 | 18 | 2587 | | | | | | | | | | | | NON-WAGE | | | | | | | | | | BPRI | 317 | 31 | 1131 | 9252945 | 461 | 1734 | 18468 | 1216808 | | PRIM | 145 | 30 | 315 | 1035907 | 272 | 970 | 4340 | 292363 | | MSEC | 278 | 33 | 228 | 580340 | 414 | 1273 | 3611 | 183353 | | HSEC | 951 | 171 | 222 | 300636 | 1649 | 4152 | 1503 | 116790 | | INTE | 393 | 71 | 59 | 45432 | 830 | 2203 | 203 | 74132 | | DEGR | 476 | 38 | 31 | 17137 | 1365 | 3782 | 135 | 10211 | | POST | 449 | 7 | 6 | 18399 | 1286 | 2496 | 12 | 3264 | | UNEM | 382 | 821 | 219 | 454161 | 1606 | 7529 | 2842 | 160073 | | TOTAL | 5387 | 4517 | 2988 | 13493665 | 133734 | 216050 | 88682 | 3565738 | Continued - TOTAL TRADE/TRANSP/FINANCE/SERV AGR/PRO SAL/SER ADM/CLE PROF AGR/PRO SAL/SER ADM/CLE PROF MSEC HSEC INTE DEGR PRIM BPRI WAGE Table 2 - (Continued) CONSTRUCTION 485210 393454 292764 53939 2200 2892 52156 181034 6535 12038 48782 36415 638 148 136 31 3054 12438 6759 473 628 1816 975 2106 1182 2193 452 253 471 365 NON-WAGE BPRI MSEC HSEC PRIM DEGR POST TOTAL UNEM INTE POST Table 3 Abridged LFM, 1982 | atus
Education PROF AD/SA/AG/
CL SA/AG/
SE PROF AD/SA/AG/
CL SA/AG/
SE PROF AD/SA/AG/
CL PROF AD/SA/AG/
CL SA/AG/
SE PROF AD/SA/AG/
CL AD/SA/AG/
SE AG/
SE PROF AD/SA/AG/
CL AD/SA/AG/
SE AG/
SE PROF AD/SA/AG/
SE <t< th=""><th>Activity Occupation</th><th>tion AGRICULTURE</th><th>RICUL</th><th>TURI</th><th>[1]</th><th>MINI</th><th>MINI/MANU/ELEC</th><th>U/ELI</th><th>EC</th><th>CON</th><th>CONSTRUCTION</th><th>CTIO</th><th>Z</th><th>TRAI</th><th>TRADE/TRAN/SERV</th><th>AN/SE</th><th>RV</th><th></th></t<> | Activity Occupation | tion AGRICULTURE | RICUL | TURI | [1] | MINI | MINI/MANU/ELEC | U/ELI | EC | CON | CONSTRUCTION | CTIO | Z | TRAI | TRADE/TRAN/SERV | AN/SE | RV | | |--|--------------------------|------------------|-----------|-----------|-----------|------|----------------|-----------|-----------|--------|--------------|-----------|-----------|------|-----------------|-----------|------|--------| | coyment 5.60 .03 .06 .14 3.61 .02 .02 2.15 .22 .21 .21 2.59 .1 .25 .11 .25 .42 .43 .01 .02 .02 .215 .22 .21 .11 .57 .64 .42 .01 .02 .01 .31 .20 .21 .43 .01 .03 .04 .01 .03 .04 .01 .03 .04 .01 .03 .04 .01 .03 .04 .01 .03 .04 .01 .03 .04 .01 .03 .04 .03 .03 .04 .03 .03 .04 .03 .03 .04 .03 .03 .04 .03 .04 .03 .03 .04 .03 .03 .04 .03 .03 .04 .03 .03 .04 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 <th< th=""><th>ducation</th><th>PROF</th><th>AD/
CL</th><th>SA/
SE</th><th>AG/
PR</th><th>PROF</th><th>AD/
CL</th><th>SA/
SE</th><th>AG/
PR</th><th>PROF</th><th>AD/
CL</th><th>SA/
SE</th><th>AG/
PR</th><th>PROF</th><th>AD/
CL</th><th>SA/
SE</th><th></th><th>IOIAL</th></th<> | ducation | PROF | AD/
CL | SA/
SE | AG/
PR | PROF | AD/
CL | SA/
SE | AG/
PR | PROF | AD/
CL | SA/
SE | AG/
PR | PROF | AD/
CL | SA/
SE | | IOIAL | | secondary condary secondary secondary secondary secondary secondary secondary secondary solidate solidate secondary secondary solidate secondary secondary secondary secondary secondary secondary secondary secondary solidate secondary solidate sol | Smployment
ow primary | 10-1 | | ben | 5.60 | .03 | 90. | 41. | 3.61 | i liga | .02 | .02 | 2.15 | 22 | | 2.11 | 2.59 | 16.77 | | secondary 36 .03 .06 .03 .60 .02 .31 .20 .21 .45 .42 .42 condary .01 .19 .12 .30 .01 .43 .01 .05 .19 .69 1.10 .32 .30 .30 condary .01 .11 .10 .03 .01 .03 .01 .03 .01 .03 .14 .30 .51 .07 .13 .30 condary .01 .01 .03 .01 .01 .03 .01 .03 .01 .88 .46 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30 | mary | | | | .63 | .02 | .05 | .03 | 90 | | .01 | | .51 | .11 | | 57 | .64 | 3.66 | | condary .01 .19 .12 .30 .01 .43 .01 .05 .19 .69 1.10 .32 .30 cdiate .03 .04 .01 .05 .02 .39 .35 .04 .03 .01 .11 .10 .04 .01 .05 .02 .39 .35 .04 .03 compary .01 .11 .03 .01 .07 .4.65 .01 .37 .10 .01 .01 secondary .02 .01 .07 4.65 .01 .05 .01 .06 .16 .02 .01 .01 condary .01 .02 .01 .70 .01 .04 .07 .02 .31 .10 condary .07 .01 .01 .04 .01 .09 .02 .01 .00 .02 .01 .09 .02 .01 aduate .07 .01 .03 .01 .01 .01 .01 .01 .01 .02 .01 .02 .01 .03 .01 .01 .01 .01 .02 .01 .03 .01 .01 </td <td>Idle secondary</td> <td></td> <td></td> <td></td> <td>.36</td> <td>.03</td> <td>90.</td> <td>.03</td> <td>09.</td> <td></td> <td>.02</td> <td></td> <td>.31</td> <td>.20</td> <td></td> <td>.45</td> <td>.42</td> <td>2.68</td> | Idle secondary | | | | .36 | .03 | 90. | .03 | 09. | | .02 | | .31 | .20 | | .45 | .42 | 2.68 | | digate 0.3 .06 .14 .18 .03 .14 .30 .51 .07 .13 cluate 0.11 .10 .04 .01 .05 .02 .39 .35 .04 .03 cluate 0.11 .11 .03 .01 .01 .01 .03 .01 .37 .10 .01 .01 condary 2.22 .01 .02 .01 .70 .01 .06 .16 .02 .01 .86 .46 condary 1.15 .01 .02 .01 .45 .01 .06 .16 .04 .12 .21 condary .07 .01 .01 .04 .01 .01 .09 .03 .14 .02 aduate .07 .01 .03 .01 .61 .01 .01 .05 .02 .06 .01 calate .07 .01 .03 .01 .61 .01 .01 .03 .03 .13 .10 calate .07 .01 .03 .01 .01 .01 .01 .01 .03 .03 .14 .02 calate .07 .01 .03 .01 .61 .01 .01 .01 .03 .03 .13 .10 calate .07 .01 .03 .01 .01 .01 .01 .01 .03 .03 .14 .02 calate .07 .01 .03 .01 .01 .01 .01 .01 .03 .03 .14 .02 calate .07 .01 .03 .01 .01 .01 .01 .03 .03 .14 .02 calate .07 .01 .03 .01 .01 .01 .01 .01 .03 .03 .14 .02 calate .07 .01 .03 .01 .01 .01 .01 .01 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 | th secondary | |
.01 | | .19 | .12 | .30 | .01 | .43 | .01 | .05 | | .19 | 69. | | .32 | .30 | 3.70 | | duate 0.1 .11 .10 .04 .01 .05 .02 .39 .35 .04 .03 orduse 0.1 .11 .10 .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | ermediate | | | | .03 | 90. | .14 | | .18 | | .03 | | .14 | .30 | | .07 | .13 | 1.61 | | riduate 0.1 .11 .03 .01 .01 .03 .01 .37 .10 .01 .01 .01 .01 .01 .01 .01 .01 .01 | gree | | | | .01 | .11 | .10 | | .04 | .01 | .05 | | .02 | .39 | | .04 | .03 | 1.15 | | secondary 35.39 .01 .07 4.65 .65 .05 .015.63 1.88 4 8 4 8 8 8 8 8 8 9 8 .01 .02 .01 .02 1.12 .16 .02 .011.86 .46 .16 .02 .011.86 .46 .10 .02 .011.86 .46 .10 .02 .011.86 .46 .10 .02 .011.86 .46 .10 .02 .01 .03 .01 .04 .01 .01 .09 .03 .14 .02 .11 .10 .03 .01 .01 .01 .01 .01 .01 .01 .02 .01 .02 .01 .02 .03 .14 .02 .01 .01 .01 .01 .02 .02 .06 .01 .03 .01 .03 .01 .01 .01 .01 .01 .02 .02 .06 .01 .03 .03 .01 .01 .01 .01 .01 .02 .02 .06 .01 .03 .03 .03 .01 .01 .01 .01 .02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 | t-graduate | | | | .01 | .11 | .03 | | .01 | .01 | .03 | | .01 | .37 | | .01 | .01 | .70 | | secondary 35.39 .01 .07 4.65 .65 .05 .015.63 1.88 4 secondary 2.22 .01 .02 1.12 .01 .05 .011.86 .46 .02 .011.86 .46 .02 .011.86 .46 .02 .011.86 .46 .01 .02 .011.86 .46 .01 .03 .011.80 .03 .011.80 .03 .011.80 .03 .011.80 .03 .011.80 .03 .011.80 .03 .011.80 .03 .011.80 .03 .011.80 .03 .011.80 .03 .011.80 .03 .011.80 .03 .011.80 .03 .011.80 .03 .03 .03 .03 .03 .03 .03 .03 .03 .0 | age | | | | | | | | | | | | | | | | | | | condary 3.96 .02 1.12 .16 .02 .01 1.86 .46 condary 2.22 .01 .70 .01 .70 .01 .05 .01 1.50 .30 ndary 1.15 .01 .02 .01 .45 .01 .06 .16 .04 1.12 .21 ate .07 .01 .01 .04 .01 .09 .02 .31 .10 uate .07 .01 .01 .01 .01 .09 .02 .06 .01 1.74 .01 .03 .01 .61 .01 .21 .12 .15 .67 .33 | ow primary | | | 3 | 15.39 | | .01 | .07 | 4.65 | | | | .65 | .05 | .01 | | 1.88 | 48.36 | | condary 2.22 .01 .70 .10 .05 .01 1.50 .30 ndary 1.15 .01 .02 .01 .45 .01 .06 .16 .04 1.12 .21 ate .07 .01 .01 .04 .07 .02 .31 .10 uate .07 .01 .01 .01 .01 .09 .03 .14 .02 uate .07 .01 .03 .01 .61 .01 .21 .15 .67 .33 10 .03 .01 .01 .01 .21 .12 .15 .67 .33 | nary | | | | 3.96 | | | .02 | 1.12 | | | | 91. | .02 | .01 | | .46 | 7.61 | | ndary 1.15 .01 .02 .01 .45 .01 .06 .16 .041.12 .21 ate .17 .01 .01 .02 .01 .04 .07 .02 .31 .10 .07 .07 .01 .01 .01 .04 .01 .09 .03 .14 .02 .01 .01 .01 .09 .02 .03 .14 .02 .01 .01 .01 .01 .01 .02 .02 .06 .01 .01 .01 .03 .01 .01 .01 .01 .01 .01 .01 .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .02 .06 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | dle secondary | | | | 2.22 | | | .01 | .70 | | | | .10 | .05 | .01 | | .30 | 4.91 | | ate | h secondary | | | | 1.15 | .01 | .02 | .01 | .45 | | .01 | | 90. | .16 | .04 | | .21 | 3.23 | | uate .07 .01 .01 .04 .01 .01 .09 .03 .14 .02 .03 .04 .01 .01 .09 .03 .14 .02 .01 .01 .01 .01 .01 .02 .02 .06 .01 .01 .01 .01 .01 .01 .02 .06 .01 .01 .01 .01 .01 .01 .01 .01 .02 .06 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | rmediate | | | | .17 | | .01 | | .28 | | | | .04 | .07 | .02 | | .10 | 1.02 | | uate .07 .01 .01 .01 .01 .09 .02 .06 .01 .01 .01 .03 .01 .03 .01 .01 .01 .01 .02 .05 .05 .01 .03 .01 .01 .01 .01 .01 .02 .05 .05 .01 .03 .01 .01 .01 .01 .02 .05 .05 .05 .01 .02 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 | ree | | | | .07 | .01 | .01 | | .04 | | .01 | | .01 | 60. | .03 | | .02 | .43 | | 1.74 .01 .03 .01 .61 .01 .21 .12 .15 .67 .33 .10 | t-graduate | | | | .07 | | .01 | | .01 | | .01 | | | 60. | .02 | | .01 | .28 | | looking of the control contro | loyed | din din di | mi s | | 1.74 | .01 | .03 | .01 | .61 | | .01 | | .21 | .12 | .15 | 19. | .33 | 3.89 | | | L | el e | TOY. | od | g | | H | 101 | | mi | QI | 1 | ber | | olid | lo
(F) | | 100.00 | PROF = Professional; AD/CL = Administrative and Clerical; SA/SE = Sales and Services Workers; AG/PR = Agriculture and Production Workers education is largely a matter of supply factors. Registering demanders in the columns and suppliers in the rows is similar to input-output accounting in which the row items are deliverers to the column items. This particular arrangement of rows and columns can be shown to increase the flexibility of the LFM for purposes of forecasting and policy making where a specific shape of demand for labour is given and a solution of the supply pattern is sought, or otherwise. What are the uses of the LFM? We may postulate that, in principle, the degree of attention which may be devoted by the economists, and the public authorities, to a particular group, on purely theoretical welfare grounds, should be in accord with the proportion of the group in the whole labour force. In a simple application of this rule, cells 50 by 6, and 57 by 6, which have the largest number of persons, about 4 millions each, should get in accordance with their shares, around 15 percent each of the research and planning effort in the nation. Actually the attention which such groups receive is likely to be very minor and much below 15 percent. Only in the presence of positive linkages, whereby the benefit which accrues to group A may trickle down to groups B, C, and D through expenditure by A or taxation of A followed by differentiated public spending, will it be legitimate to increase the development effort in A at the cost of B, C, and D in spite of a smaller share of A than that of B, C or D in the labour force. In this respect, a social accounting matrix can supply the relevant information on the strength and direction of the linkages.2 The strict observation of the LFM in combination with information on linkages contributes, therefore, to a more democratic application of the development effort. The LFM can be a helpful guide to relevant policy research in a related aspect. Not only can a particular group be located in the LFM but its multi-dimensional characteristics can also be made more apparent. The matrix indicates the kind of characteristics which decision-makers have to cope with in their encounters with particular groups. The type of problems faced by a specific group may be even anticipated on the basis of the apparent characteristics. Besides being an essential tool for a people-oriented development policy the LFM is functional in highlighting several aspects of development and planning. Although the LFM gives a static picture, yet the availability of the LFMs for more countries and more years would allow one to detect and analyse structural patterns in the labour force which can in turn be helpful in assessing manpower plans and performances. We have computed the LFMs for 1978-79 and 1982-83 — the last two surveys — and used them to project an LFM for 1988, as in Table 4. The projected LFM becomes a check tool for manpower planning in the medium term.³ Table 4 Prolonged LFM, 1988 | | | TOTAL | | 15 00 | 00.00 | 07:4 | 7.10 | 4.71 | 3.42 | 1.92 | 1.20 | | | 42.39 | 7.50 | 5.00 | 3.52 | 2.43 | .63 | .34 | 406 | |----------|----------------|------------------|-----------------|---------------|--------|------------------|----------------|--------------|--------|---------------|------------|----------|---------------|---------|------------------|----------------|--------------|--------|----------------|----------------|------------| | | \S | AG/
PR | | 251 | 70 | 1. | †
† | .35 | 44 | 90. | .01 | | | 1.70 | .56 | .34 | .27 | .40 | .05 | .01 | 36 | | | N/SEF | SA/ | | 1 86 | 205 | 5 | 74. | .34 | 60. | .04 | .02 | | 0 | 2.30 | 1.87 | 1.55 | 1.18 | .37 | .15 | .10 | 2 | | | TRAD/TRAN/SERV | AD/
CL | | .19 | 15 | 15 | 21. | 1.03 | .50 | .36 | .12 | | 6 | 70. | .01 | .01 | .05 | .02 | .04 | .04 | 4 | | | TRA | PROF | | .18 | 90 | 15 | 21. | .84 | .30 | .42 | .35 | | | .04 | .01 | .03 | .18 | .07 | .10 | 80. | 14 | | | z | AG/
PR | | 1.94 | 63 | 38 | 0 0 | 57. | 98. | .04 | .01 | | 20 | · c. | .12 | .07 | .05 | .12 | .01 | | .25 | | | CONSTRUCTION | SA/
SE | | .03 | 0. | | | | | | | | | | | | | | | | | | | NSTRI | AD/
CL | | .04 | .01 | .02 | 0.6 | 00. | .03 | 90. | .05 | | 0.1 | 70. | | | .01 | | .01 | .01 | | | | CO | PROF | | | | | 0.1 | 10. | .01 | .01 | .01 | | | | | | | | | | | | | CC | AG/
PR | | 3.40 | 1.11 | .64 | 53 | 3 . | 19. | 60. | .01 | | 3 22 | 1 0 | 1.08 | 89. | .47 | 1.25 | .10 | .02 | .65 | | | MINI/MANU/ELEC | SA/
SE | | .13 | .04 | .02 | 0.1 | 10. | | | | | 07 | 00 | 70. | .01 | | | | | .01 | | | I/MAN | AD/
CL | | 60. | .07 | .07 | 44 | | . I.y | .12 | .04 | | 0.1 | | | 10. | .02 | .01 | .01 | .01 | .03 | | | MIN | PROF AD/ | | 60. | 90. | 80. | 19 | 3.4 | 4. | 90. | 22 | | | | | * 0 | 10. | | | | .01 | | Tall | AGRICOLIURE | SA/ AG/
SE PR | | 5.43 | 19. | .40 | .23 | 0.4 | +0. | 40. | 70. | | 31.67 | 282 | 000 | 1.29 | 1.28 | .17 | 9I. | .08 | 1.78 | | DICITI | VICUL | AD/
CL | | | | | .02 | | | | | | | | | | | | | | .01 | | | | PROF | Activity | occupation / | Status | Wage Employment | Below primary | rimary | Middle secondary | High secondary | Intermediate | Пеотее | Post-oraduate | O Dinnania | Non-Wage | Below primary | Primary | Middle secondary | High secondary | Intermediate | Пеотер | Post oradinate | t cot Staddall | Unemployed | = Agriculture and Production Workers Services Workers; AG/PR Sales and = Professional; AD/CL = Administrative and Clerical; SA/SE ² Cf. Cohen [1]. The completion for Pakistan of a social accounting matrix at Pakistan Institute of Development Economics would allow an analysis of inter-group income linkages. ³ Given LFM for t-1 and t, a projected LFM for t+1 is obtainable from a cell-wise application of the growth rate between t-1 and t to t. The obtained values can be converted in a percentage distribution as is done in Table 4. The matrix can also function as a reference for labour market information, monitoring and matching in the short-term as well as a sampling framework for labour force surveys. The next section assesses the manpower targets of the Sixth Plan against the background of the LFM. There are other conceivable elaborations which are capable of
converting the LFM from a static to a dynamic matrix, allowing basic questions relating to labour mobility to be treated in the dynamic context.⁴ Finally, the matrix can be indispensable in a micro-analytic modelling of social systems.⁵ These elaborations are not tested yet, and it is hoped that subsequent work may be done on them. #### 3. THE SIXTH PLAN AND THE LABOUR FORCE MATRIX OF 1988 In this section we develop and simulate an integrated manpower planning framework which simulates the Sixth Five-Year Plan [3] and rearrange the resulting plan simulations in the form of a target LFM for 1988. The target LFM (Table 6) will be confronted with the simple projection of the LFM for 1988 (Table 4). The differences between the target LFM and the prolonged LFM would throw light on the induced changes which are likely to take place in the future as a result of planning decisions and provide some basis for assessing the ambition and feasibility of the plan. Manpower planning, understood as an exercise which balances the demand for and supply of labour types in the medium term in an integrated framework which fulfils the maximum attainable development and utilization of human resources, has been pursued in Pakistan at intervals of about five years which coincided with the preparation of development plans. Although the underlying frameworks have appreciably improved, they are not yet institutionalized in a manner which allows them to produce rolling forecasts on a regular basis or to permit the monitoring of their implementation. The institution of such activities requires a collaborative effort by research and monitoring units in the Ministries of Planning, Labour and Education. Such collaborative efforts are still lagging behind. The plan simulations in this section are based on tentative assumptions regarding future government policy as of early 1983. These policies were given a more definitive form by the publication of the Sixth Five-Year Plan (1983—88). As will be apparent for the knowledgeable reader, the official plan targets vary only slightly from the utilized tentative assumptions. At the time, and in their own way, the calculations presented in this section formed one input, among other inputs, of the Planning Division's endeavour to prepare the manpower part of the Sixth Plan. It is noted that the published plan itself devotes only a few pages to the manpower part and its manpower targets are limited to sectoral aggregates. The Sixth Plan considers a domestic labour force (excluding net migration) of 27.5 millions in mid-1983 which is expected to grow to 30.8 millions in mid-1988. With a terminal unemployment figure of 1.0 million, a target employment of about 29.8 million is obtained. The model we utilize for breaking up these unemployment and employment figures by destination is found in Appendix 2. The model consists of a demand part and a supply part. The results which are disaggregated by status, sector, occupation and education are expressed as proportions of the total labour force in an abbreviated form in Table 5. Table 5 Plan Simulations of Imbalances by Occupation and Education for 1988 | Category | National
Supply
(in Thou-
sands) | Domestic
Supply
(in Thou-
sands) | Employment
(in
Thou-
sands) | Unemploy-
ment
(in Thou-
sands) | National
Imbalance
(Percent-
age) | Domestic
Imbalance
(Percent-
age) | |----------------|---|---|--------------------------------------|--|--|--| | - Korenke in | (1) | (2) | (3) | (4) | (5) | (6) | | Occupational | | | | | | | | Professional | 958 | 888 | 854 | 34 | 3.55 | 3.83 | | Administrative | 253 | 253 | 222 | 31 | 12.25 | 12.25 | | Clerical | 928 | 918 | 824 | 94 | 10.13 | 10.24 | | Sale | 3631 | 3631 | 3443 | 188 | 5.18 | 5.18 | | Service | 1467 | 1457 | 1401 | 56 | 3.82 | 3.84 | | Agriculture. | 16118 | 16118 | 15421 | 697 | 4.32 | 4.32 | | Production | 7995 | 7535 | 7635 | -100 | -1.25 | -1.33 | | Total | 31350 | 30800 | 29800 | 1000 | 3.19 | 3.25 | | Educational | | | | | | | | Below primary | 22458 | 22078 | 21460 | 618 | 2.75 | 2.80 | | Primary | 3246 | 3175 | 3248 | - 72 | -2.22 | -2.27 | | Middle | | | | | | | | secondary | 2333 | 2293 | 2224 | 69 | 2.96 | 3.01 | | High secondary | 2070 | 2035 | 1818 | 217 | 10.48 | 10.66 | | Intermediate | 632 | 622 | 530 | 92 | 14.56 | 14.79 | | Degree | 419 | 417 | 365 | 52 | 12.41 | 12.47 | | Post-graduate | 192 | 179 | 155 | 24 | 12.50 | 13.41 | | Total | 31350 | 30800 | 29800 | 1000 | 3.19 | 3.25 | Sources of Cols. (1), (2), (3) are the model applications, whereby Col. (2) = Col. (1) – net migration over plan period. Distribution of net migrants in Sixth Plan is assumed the same as in Fifth Plan. Col. (4) = Col. (2) - Col. (3) Col. (5) = $100 \times \text{Col.}$ (4) ÷ Col. (1) Col. (6) = $100 \times \text{Col.}$ (4) ÷ Col. (2) Very briefly described, the demand part calculates future employment-output elasticities by sector of activity for two types of the work force: the wage type ⁴ Cf. Stone [4]. ⁵ Cf. Orcutt et al. [2]. (employers and employees) and the non-wage type (the self-employed and family workers). Those two types correspond roughly to the organized and unorganized segments. Given the growth targets, the model finds out the wage employment and computes the non-wage employment in a residual-like manner (Appendix 2). The projected employment by status and sector is then converted into employment by occupational categories and, in turn, into educational levels. In these various steps the distinction between wage and non-wage employment is considered to be very vital for the following reasons: - (a) Employment elasticities are different for the organized and unorganized economies, as is shown in Appendix 2. - (b) While workers in the organized economy are, relatively speaking, effectively employed, unorganized unemployment usually experiences a hidden underemployment which is subject to erratic fluctuations. Our plan estimates imply that underemployment in the unorganized sector in the near future would fall. Demand, as calculated from growth targets and employment elasticities, moves ahead of supply in the unorganized economy by about 4 percent. Such an excess of demand over supply among the self-employed and family helpers usually materializes in the form of a reduction in underemployment and, therefore, an improvement in earnings. - (c) The occupational distribution within sectors in the organized economy is much more differentiated than in the unorganized economy. - (d) Finally, the educational input into occupations is much more sophisticated in the organized than in the unorganized economy. The supply part projects enrolments, graduates and labour stock by educational levels and converts these into occupational categories. By deducting demand from supply as far as occupation and education are concerned, and accounting for net migration, one obtains the unemployment figures. The plan simulation, as found in Table 5, forecasts the following growth of *employment* by occupation over the plan period: professional 12 percent, administrative 16 percent, clerical 14 percent, sales workers 25 percent, service workers 16 percent, agricultural workers 15 percent, and production workers 15 percent. As for employment by education, the growth rates are: less than primary 16 percent, primary 17 percent, middle 16 percent, high 17 percent, intermediate 16 percent, degree 15 percent, and post-graduate 13 percent. It is noted that the variation in growth is much less with regard to educational levels than with regard to occupational groups. Turning to the *supply* forecasts, the percentage increases by occupational groups over the plan period would amount to: professional 17 percent, administrative 21 percent, clerical 21 percent, sales workers 27 percent, service workers 16 percent, agricultural workers 14 percent, and production workers 15 percent. The percentage increases in the labour force by educational levels are: level 1 = 13 percent, level 2 = 18 percent, level 3 = 23 percent, level 4 = 29 percent, level 5 = 29 percent, level 6 = 9 percent and level 7 = 23 percent. Regarding the future imbalance, it is noted from Table 5 that there will remain some shortages of production workers. It is also likely that there will be shortages for workers with primary education partly owing to a lagging supply associated with the particularly high rates of drop-outs in primary education, and partly owing to migration. Generally speaking, the labour market for the lower skill and educational levels would continue to be tighter than for upper skill and educational levels. The exhaustion of the forecasted surpluses at the upper skill and educational levels would ultimately require an upgrading of jobs in terms of educational qualifications. Such an upgrading will not leave untouched the future patterns of job expectations, remunerations and productivities. What are the implications of the plan for the future structure of the labour force? The plan simulations can be arranged to give the percentage distribution of the respective cells of the labour force in 1988, as in Table 6, which can be compared with the prolonged LFM for 1988, Table 4. Table 6 does not show any significant progress in the upgrading of less productive labour groups, suggesting that the plan does not break with the past structural trends. #### 4. CONCLUDING REMARKS A labour force matrix allows one to read the number of persons who belong to a specific combination of location, status, sector, occupation and education, and is, therefore, superior to two-dimensional cross-tabulations. Moreover, the LFM is a flexible tool, extendible to dynamic analysis and social-system modelling and can serve as a neutral
guide in the allocation of research and planning efforts for competing groups of the population. Under plausible assumptions, such matrices have been constructed from published data of the labour surveys of 1977-78 and 1982-83 and projected to 1988. From the many interesting experimentations with the LFM, we chose to simulate the Sixth Plan by means of a model which forecasts demand and supply and generates a planned LFM for 1988. A comparison between the two matrices shows that on the whole the plan does not predict major surprises in the structure of the labour force. Concurrently, the results suggest some future unresolved shortage-imbalances for production workers and the lowest educational levels and some surpluses of a frictional nature in the upper skills and educational levels. Even though the apparent Table 6 Plan Simulations of the Labour Force Matrix for 198 | Occupation | | AGRICULTURE | LTUR | Ш | MIN | MINI/MANU/ELEC | U/EL | EC | CO | CONSTRUCTION | CTIO | z | TRA | D/TR/ | TRAD/TRAN/SERV | RV | | |-------------------|------|-------------|-----------|-----------|------|----------------|-----------|-----------|------|--------------|-----------|-----------|------|-----------|----------------|-----------|-------| | Status, Education | PROF | AD/
CL | SA/
SE | AG/
PR | TOTAL | | Wage Employment | 700 | | | 1 | | | | | | | | | - | | | | | | Below primary | P | я | .01 | 4.95 | .02 | .05 | .38 | 5.55 | p | .01 | .03 | 3.32 | .31 | .19 | 1.87 | 2.68 | 19.37 | | Primary | B | В | q | .62 | .01 | .05 | .11 | .70 | p | P | P | .42 | .15 | .17 | .53 | .34 | 3.10 | | Middle secondary | p | a | p | .37 | .01 | .15 | 60. | .42 | В | .01 | 9 | .25 | .21 | .21 | 44. | .20 | 2.36 | | High secondary | p | P | p | .20 | .03 | .26 | 90. | .22 | .01 | .05 | P | .13 | .46 | .94 | .31 | .11 | 2.78 | | Intermediate | p | p | g | .03 | .02 | .12 | .01 | .03 | p | .03 | 9 | .02 | .24 | 44 | .07 | .02 | 1.03 | | Degree | p | p | e | Q | .02 | 60. | p | В | Р | .02 | æ | p | .29 | .34 | .04 | p | .80 | | Post-graduate | p | а | | p | .02 | .03 | g | B | P | р | | p | .22 | 11 | q | p | .38 | | Non-Wage | | | | | | | | | | | | | | | | | | | Below primary | | | (4) | 35.12 | | P | p | 5.28 | | q | p | .80 | 11. | .01 | 06.9 | 2.23 | 50.45 | | Primary | | | | 4.43 | | P | a | 19. | | p | B | .10 | 90. | q | 1.95 | .28 | 7.49 | | Middle secondary | | | | 2.63 | | q | a | .40 | | P | ಡ | 90. | 80. | .01 | 1.62 | .17 | 4.97 | | High secondary | | | | 1.40 | | Q | B | .21 | | .02 | ಡ | .03 | .17 | .05 | 1.13 | 60. | 3.10 | | Intermediate | | | | .22 | | q | r | .03 | | р | | p | 60. | .03 | .26 | .01 | .64 | | Degree | | | | .04 | | P | | p | | Р | | p | 11. | .02 | 14 | p | .31 | | Post-graduate | | | | .04 | | 9 | | p | | q | | p | 80. | 9 | .01 | q | .13 | | Unemployed | | | | | | | | 3.25 | | | | | | | | | 3 35 | | | | | | | | | | | | | | | | | | - | 2.6 | Services Workers; AG/PR = Agriculture and Production Workers Sales and PROF = Professional; AD/CL = Administrative and Clerical; SA/SE = a = .001 .001, b = .001 .01. recommendations for balancing the labour force may be more vocational training, more primary school enrolment and less primary school drop-out, and job upgrading at the higher end of skills and education, a complementary analysis is required before sensible conclusions can be drawn. Besides, a disaggregation into many more occupations and short-term labour market signals as regards trends in vacancies and relative earnings are indispensible in complementing the obtained picture.⁶ Appendix 1 ### METHODOLOGY FOR THE CONSTRUCTION OF A LABOUR FORCE MATRIX (LFM) The available cross-tabulations consist of the following: XY, XZ, ZY and ZW where X = sector, Y = status, Z = occupation and W = education. A step-wise use of these cross-tabulations would necessarily imply working first with XY, XZ, and ZY, while ZW is to be entered at a later stage. For XY, XZ and ZY determine which cross-tabulation is the most independent, i.e. least dependent, on the basis of the lowest χ^2 . The test shows XY and XZ to have the highest χ^2 , while ZY shows the lowest χ^2 . As a result, an initial tableau can be worked out from XY and XZ, assuming ZY to be initially irrelevant. The joint probabilities of the elements of Z and Y in X can be determined, for instance, by $P(Z \land Y \parallel X)$, i.e. $\frac{Z1}{X1} * \frac{Y1}{X1}$ gives probability of Z1Y1 in X1, and so for Z2Y2 in X2, etc. The initial tableau can be constructed on the basis of these probabilities and the given values of X. The given sub-totals from ZY may be inserted now and the RAS method can be applied to obtain a consistent matrix of XYZ. Finally, XYZ can be extended to W by splitting up relevant cells using information on ZW. The result is a labour force matrix in the dimensions XYZW. ⁶Here is an opportunity to mention several studies undertaken at the Manpower Division, in which the author participated, with the purpose of providing more details on occupational distribution and elaborating on policy research on labour markets. 583 Appendix 2 #### MODEL FOR PLANNING DEMAND AND SUPPLY OF THE LABOUR FORCE Demand for manpower is distinguished by employment status, s. The two categories of status are (i) wage employment and (ii) non-wage employment. Manpower demand by sector i and status s, that is, DEM_i^s , can be related to GDP_i through elasticities els, as in equation (1). $$\frac{DEM_{i,t}^{s} - DEM_{i,t-1}^{s}}{DEM_{i,t-1}^{s}} = els_{i}^{s} \frac{GDP_{i,t} - GDP_{i,t-1}}{GDP_{i,t-1}} \qquad (1)$$ Equation (1) computes DEM_i^1 and DEM_i^2 , but DEM_i^2 is liable to adjustment so as to meet the restriction, Σ $DEM_i^2 = (1 \text{-}ump) EAP - \sum_i^1 DEM_i^1$ where ump and EAP are the unemployment rate and the economically active population. The coefficient ump is a target and the variable EAP is a given figure. To obtain occupational demand by q, and educational demand by k, we have $$DEM_{qi}^{s} = lab_{qi}^{s} DEM_{i}^{s} \qquad ... \qquad ... \qquad (3)$$ $$DEM_{q}^{s} = \sum_{i} DEM_{qi}^{s} \qquad ... \tag{4}$$ $$DEM_{kq}^{s} = lab_{kq}^{s} DEM_{q}^{s} ... (5)$$ $$DEM_{k}^{s} = \sum_{q} DEM_{kq}^{s} \qquad \dots \tag{6}$$ $$DEM_{q} = \sum_{s} DEM_{q}^{s} \qquad ... \qquad ... \qquad (7)$$ $$DEM_{k} = \sum_{s} DEM_{k}^{s} \qquad (8)$$ The national supply forecasts are the result of applying the following equations. Enrolments in the first class of primary education are projected on the basis of a growth rate. Enrolments in the other classes are projected on the basis of transition rates. $$ENR_{1,t+1} = ENR_{1,t} (1 + gfp) \qquad (9)$$ $$ENR_{c, t+1} 0 = trn_{c-1} ENR_{c-1, t} C = 2, ..., 16$$... (10) $ENR_{c,t}$ = enrolment by class by year (± beginning of school year, end of calendar trn = transition rate gfp = growth rate of first class primary enrolments c =class, sixteen in total t = year School leavers consist of those enrollees who are not retained in the school $$SLV_{c,t} = (1-trn_c) ENR_{c,t} c = 1, , 16$$... (11) $SLV_{c,t}$ = school leavers: these can be drop-outs or graduates. Supply of the labour force by educational level in year t is previous supply in t-1, less attrition due to death and retirement, plus new entrants made dependent on school leavers, participation rates and conversion rates. $$SUP_{k,t} = (1 - atr_k) SUP_{k,t-1} + par_k con_{ck} SLV_{c,t} K = 2, , 7$$ (12) SUP, = supply of labour by educational level atr = attrition rate including death and retirement par = participation rate of school leavers in the labour force con = conversion rate of school leavers by class c into education k k = educational level, k = 2, , 7 Deducting the above supplies from projections of the economically active population gives the supply of labour with less than primary education. $$SUP_{1, t} = EAP_{t} - \frac{\sum_{k=2}^{7} SUP_{k, t}}{\sum_{k=2}^{8} SUP_{k, t}} \qquad (13)$$ SUP₁ _t=Supply of labour with less than primary education including illiterates EAP_{t} = economically active population The supply by education SUP_{L} is converted to a supply by occupation SUP_{d} : $$SUP_{q,t+1} = SUP_{q,t} + \sum_{k} lab_{qk} \left(SUP_{k,t+1} - SUP_{k,t} \right) \qquad ... \tag{14}$$ Finally, domestic supply is obtained by deducting net migration from national supply. Regarding the application of the model, our assumed employment elasticities for the Sixth Plan, which are projections of past trends, are found below in the 2nd and 3rd columns. Annual growth targets are in the first column. | Sec | tor | Growth targets | Employ elastic | | |-----|----------------|----------------|----------------|-------------| | | | Percent | Organized | Unorganized | | 1. | Agriculture | 4.9 | .37 | .68 | | 2. | Mining | 7.5 | .14 | 0 | | 3. | Manufacturing | 9.3 | .48 | .07 | | 4. | Electrical | 8.0 | .66 | 1.02 | | 5. | Construction | 8.5 | .72 | 0 | | 6. | Trade | 7.5 | .50 | .62 | | 7. | Transportation | 6.8 | .37 | 0 | | 8. | Services | 4.7 | .31 | .81 | As regard lab_{qi}^s and lab_{kq}^s , these are available without a distinction by status s, but as was explained and applied in Appendix 1, it was possible to derive realistic sets of lab coefficients for the wage and non-wage employment status from the labour force survey of 1982-83. Finally, the coefficients in the supply equations are based on the implicit estimates of the Fifth Plan, adjusted with regard to gfp and turn to reflect Sixth Plan policies of higher enrolment targets. #### REFERENCES - Cohen, S. I. "A Social Accounting Matrix for Colombia". Paper prepared for the General Conference of the International Association for Research in Income and Wealth. 1985. - Orcutt, G.H., M. Greenberger, J Korbel, and A. M. Rivlin. Microanalysis of Socioeconomic Systems. Harper and Row 1961. - Pakistan. Planning Commission. The Sixth Five Year Plan, 1983–1988. Islamabad. 1984. - 4. Stone, R. Demographic Accounting and Model Building. Paris: OECD. 1971. # Comments
on "The Labour Force Matrix of Pakistan: Selected Applications" By working out his labour force matrix of Pakistan, the author has given us more detailed information about the labour force than we had before. I suppose we can all agree that this kind of statistics may be useful for analyses of the labour force. However, at this early stage of working out more detailed information about the labour force in Pakistan it is not completely clear what analytical uses can be made of this information. This makes it somewhat difficult for me to comment on the paper. However, the author himself indicates that if, for example, a cell constitutes 15 percent of the labour force, this group of labour should get around 15 percent of the research and planning effort of the nation. To the best of my knowledge it may not be easy to justify this from any form of theory that I know of. I suppose that if 15 percent of the labour force was unemployed many politicians and economists would argue that this group of labour should get more than 15 percent of the research and planning effort of the nation. At the end of the paper the author uses this matrix for estimating the demand for each type of labour in each industry in 1988. In estimating the demand for each type of labour the equations in the appendix imply that he is using elasticities of demand for labour with respect to GDP for each industry. In estimating the supply of each category of labour he estimates the enrolments in the first class on the basis of a growth rate. Enrolments in the other classes are projected on the basis of transition rates. On the basis of these projections he estimates whether we will have excess supply of or demand for labour of different categories in 1988. Needless to say these results may, of course, be quite sensitive to the magnitude of the parameters. Unfortunately, the author does not discuss these problems. Also, his estimates of excess supply of and demand for the different categories of labour will only be relevant if some kind of wage rigidities existed. Therefore, one would have appreciated some discussion of the relevance of such rigidities and the likely development of the future wage structure. However, I suppose that this paper is to be considered a starting point for further analyses. I hope that these comments may be of some help for the author's future work. Professor, Institute of Economics, Norwegian School of Economics and Business Administration, Bergen, Norway Prof, Gunnar Fløystad